If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-18t-9=0
a = 3; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·3·(-9)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12\sqrt{3}}{2*3}=\frac{18-12\sqrt{3}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12\sqrt{3}}{2*3}=\frac{18+12\sqrt{3}}{6} $
| y+12.5=21.7 | | 5.3g+9=2.4 | | 4(x+5)=-(3x-7) | | 2x^2-11x-16=5 | | -67=n-25 | | -45+s=-105 | | 6x+24=14x+16 | | x-5.1=-3.1 | | 3/2d=3/8 | | 2+4x=60 | | 5=-22/3x-5/3 | | 4x−15=x+84 | | -3(3c-5)+7=49 | | 8x-2=34+2x | | 10(x+3)=10(x+10) | | 3x^2-13x-1088=0 | | 720=560+x+x | | 5(0.2+1.2y)-1=6y | | d=16(.5)^2 | | -9=a | | 3^3y-2=2187 | | 5^(2x)+5^(x)-42=0 | | 5.2-(1.5+1.2)=t | | 7p2-6p-16=0 | | 572=11(n+27) | | 8x-70=6x-10 | | 897=23(y-923) | | -2/11=w-(-5.81) | | (3x/7=-3)2 | | 15(x+13)=765 | | -552=23y | | 23y=–552 |